#include #include #include #include #include #include #include #include #include #include #include #include using namespace cv; using namespace std; struct shared_t { string detectUrl; string recordUrl; string outDir; string postMoCmd; string postNoMoCmd; string secsStr; string camId; bool ffRunning; bool motion; int secs; int ignore; } sharedRes; string cleanDir(const string &path) { if (path[path.size() - 1] == '/') { return path.substr(0, path.size() - 1); } else { return path; } } bool createDir(const string &dir) { auto ret = mkdir(dir.c_str(), 0777); if (ret == -1) { return errno == EEXIST; } else { return true; } } bool createDirTree(const string &full_path) { size_t pos = 0; auto ret = true; while (ret == true && pos != string::npos) { pos = full_path.find('/', pos + 1); ret = createDir(full_path.substr(0, pos)); } return ret; } void vidCap(shared_t *share) { time_t rawtime; time(&rawtime); auto timeinfo = localtime(&rawtime); char dirName[20]; char fileName[20]; strftime(dirName, 20, "%Y%m%d", timeinfo); strftime(fileName, 20, "%H%M%S.ts", timeinfo); auto tmpFile = string("/tmp/mow/") + share->camId + ".ts"; auto ffmpegCmd = string("ffmpeg -hide_banner -loglevel error -i ") + share->recordUrl + string(" -t ") + share->secsStr + string(" -y -vcodec copy ") + tmpFile; createDirTree(string("/tmp/mow")); system(ffmpegCmd.c_str()); share->ffRunning = false; if (share->motion) { if (!share->postMoCmd.empty()) { system(share->postMoCmd.c_str()); } createDirTree(cleanDir(share->outDir) + string("/") + string(dirName)); auto dstPath = cleanDir(share->outDir) + string("/") + string(dirName) + string("/") + string(fileName); system(string("mv " + tmpFile + " " + dstPath).c_str()); } else { if (!share->postNoMoCmd.empty()) { system(share->postNoMoCmd.c_str()); } system(string("rm " + tmpFile).c_str()); } } void detectDiff(const Mat &prev, const Mat &next, shared_t *share) { // optical flow calculations are used to detect motion. // reference: https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html vector p0, p1; vector status; vector err; auto criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03); // distance is basically 0.0578% of the total pixel area of the // frames. this value is used later below. auto distance = ((double) 0.0578 / (double) 100) * (prev.size().height * prev.size().width); auto count = 0; goodFeaturesToTrack(prev, p0, 100, 0.3, 7, Mat(), 7, false, 0.04); calcOpticalFlowPyrLK(prev, next, p0, p1, status, err, Size(10, 10), 2, criteria); for(uint i = 0; (i < p0.size()) && !share->motion; i++) { // select good points if(status[i] == 1) { if (count == 5) { share->motion = true; } else if (norm(p0[i] - p1[i]) > distance) { // any points that moved 0.0578% or more of the total pixel // area can be considered motion. // the count variable is there to make sure mutiple points // are calling out motion. this prevents false positives // due to insects or other small objects like grass, bush // etc... count += 1; } } } } void moDetect(shared_t *share) { auto cap = VideoCapture(share->detectUrl, CAP_FFMPEG); Mat firstFrame, currentFrame, frame; while (share->ffRunning && !share->motion) { cap >> frame; if (frame.empty()) { // broken frames returned from the cameras i've tested this with would cause // the entire capture connection to drop, hence why this bit of code is here // to detect empty frames (signs of a dropped connection) and attempt // re-connect to the cammera. cap.open(share->detectUrl, CAP_FFMPEG); } else if (firstFrame.empty()) { cvtColor(frame, firstFrame, COLOR_BGR2GRAY); } else { cvtColor(frame, currentFrame, COLOR_BGR2GRAY); detectDiff(firstFrame, currentFrame, share); } } } string parseForParam(const string &arg, int argc, char** argv) { for (int i = 0; i < argc; ++i) { auto argInParams = string(argv[i]); if (arg.compare(argInParams) == 0) { // check ahead, make sure i + 1 won't cause out-of-range exception if ((i + 1) <= (argc - 1)) { return string(argv[i + 1]); } } } return string(); } int main(int argc, char** argv) { auto vidRet = 0; auto moRet = 0; auto secsStr = parseForParam("-sec", argc, argv); auto highUrl = parseForParam("-rs", argc, argv); auto lowUrl = parseForParam("-ds", argc, argv); auto outDir = parseForParam("-dir", argc, argv); auto moCmd = parseForParam("-mc", argc, argv); auto noMocmd = parseForParam("-nmc", argc, argv); auto camId = parseForParam("-id", argc, argv); auto secs = strtol(secsStr.c_str(), NULL, 10); if (lowUrl.empty()) { cerr << "the detection-stream camera url is empty." << endl; } else if (highUrl.empty()) { cerr << "the recording-stream camera url is empty." << endl; } else if (outDir.empty()) { cerr << "the output directory is empty." << endl; } else if (camId.empty()) { cerr << "the camera id is empty." << endl; } else if (secs == 0) { cerr << "the amount of seconds in -sec cannot be 0 or an invalid number was given." << endl; } else { while (true) { sharedRes.recordUrl = highUrl; sharedRes.detectUrl = lowUrl; sharedRes.postMoCmd = moCmd; sharedRes.postNoMoCmd = noMocmd; sharedRes.secsStr = secsStr; sharedRes.secs = secs; sharedRes.outDir = outDir; sharedRes.camId = camId; sharedRes.ffRunning = true; sharedRes.motion = false; sharedRes.ignore = 0; thread th1(vidCap, &sharedRes); thread th2(moDetect, &sharedRes); // Wait for the threads to finish // Wait for thread t1 to finish th1.join(); // Wait for thread t2 to finish th2.join(); } return 0; } return 1; }